Add like
Add dislike
Add to saved papers

Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators.

This paper presents two neural network approaches to real-time joint torque optimization for kinematically redundant manipulators. Two recurrent neural networks are proposed for determining the minimum driving joint torques of redundant manipulators for the eases without and with taking the joint torque limits into consideration, respectively. The first neural network is called the Lagrangian network and the second one is called the primal-dual network. In both neural-network-based computation schemes, while the desired accelerations of the end-effector for a specific task are given to the neural networks as their inputs, the signals of the minimum driving joint torques are generated as their outputs to drive the manipulator arm. Both proposed recurrent neural networks are shown to be capable of generating minimum stable driving joint torques. In addition, the driving joint torques computed by the primal-dual network are shown never exceeding the joint torque limits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app