Add like
Add dislike
Add to saved papers

Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection.

The transduction mechanisms of a wideband (30 MHz) contact ultrasound sensor based upon the use of a thin polymer film acting as a Fabry-Perot interferometer have been investigated. Polyethylene terepthalate (PET) sensing elements, illuminated by the free-space collimated output of a wavelength-tunable DBR laser diode, have been used to study the sensor transfer function, sensitivity, the effect of water absorption, and frequency response characteristics. Acoustic performance was evaluated by comparing the sensor output with that of a calibrated PVDF membrane hydrophone using laser-generated acoustic transients as a source of broadband ultrasound. An ultrasonic acoustic phase sensitivity of 0.1 rad/MPa, a linear operating range to 5 MPa, and a noise-equivalent-pressure of 20 kPa over a 25 MHz measurement bandwidth were obtained using a water-backed 50 mum PET sensing film. A model of frequency response that incorporates the effect of an adhesive layer between the sensor film and backing material has been developed and validated for different sensing film thicknesses, backing configurations, and adhesive layer thicknesses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app