JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reactive oxygen species mediate ERK activation through different Raf-1-dependent signaling pathways following cerebral ischemia.

Neuroscience Letters 2008 Februrary 21
Production of reactive oxygen species (ROS) results in up-regulation of the extracellular signal-regulated kinase (ERK) cascade in response to numerous stimuli. Cerebral ischemia induces calcium-dependent kinase activation followed by ROS production. Here, we examined how ROS mediates the activation of ERK following cerebral ischemia in the rat hippocampus. We found that alpha-tocopherol, a free radical scavenger, attenuated the initial, robust activation of ERK by inhibiting Raf-1 dephosphorylation at Ser259. Alpha-tocopherol also down-regulated the second and mild activation of ERK through inhibition of Src-dependent phosphorylation of Raf-1 at Tyr340/341. Our results suggest that ROS production mediates the biphasic activation of ERK through different signaling cascades following post-ischemic reperfusion. Mediation of these signaling pathways involves changes in Raf-1 phosphorylation at different sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app