IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture.

Endothelin-1 is a potent vasoconstrictor mediating its effects via two receptor subtypes, the endothelin type A (ET(A)) preferentially situated on smooth muscle cells, mediating vasoconstriction and endothelin type B (ET(B)) mainly located on endothelial cells, mediating vasodilatation. In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture. Pharmacological inhibition of endothelium-derived dilatory mediators did not influence endothelin ET(A) or ET(B) receptor-mediated vasoconstriction in fresh segments. In cultured arteries, inhibition of endothelial vasodilators potentiated the effect of sarafotoxin 6c. In conclusion, endothelin ET(B) receptor stimulation in cultured coronary arteries elicits vasoconstriction. This is likely not related to endothelial dysfunction with putative loss of its vasodilator components, but rather explained by the up-regulation of contractile endothelin ET(B) receptors on smooth muscle cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app