Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation.

Cancer Cell 2008 Februrary
Recent evidence suggests that alterations in the self-renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1), we demonstrated that plexiform neurofibroma, the only benign peripheral nerve sheath tumor with potential for malignant transformation, results from Nf1 deficiency in fetal stem/progenitor cells of peripheral nerves. Surprisingly, this did not cause hyperproliferation or tumorigenesis in early postnatal period. Instead, peripheral nerve development appeared largely normal in the absence of Nf1 except for abnormal Remak bundles, the nonmyelinated axon-Schwann cell unit, identified in postnatal mutant nerves. Subsequent degeneration of abnormal Remak bundles was accompanied by initial expansion of nonmyelinating Schwann cells. We suggest abnormally differentiated Remak bundles as a cell of origin for plexiform neurofibroma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app