Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of uterine natural killer cells in angiogenesis of human decidua of the first-trimester pregnancy.

Decidualization is accompanied by extensive angiogenesis, which is an essential step in the maturation of new blood vessels in mammalian pregnancy. The purpose of this study was to determine a distribution of uNK cells (CD56(+) uNK or CD56(bright) cells) in human decidua of the first-trimester pregnancy, and investigate whether uNK cells in human decidua could express vascular endothelial growth factor (VEGF-A) and/or angiopoietin2 (Ang2). Our immunohistochemical staining results demonstrated that a great amount of uNK (CD56(+)) cells scattered throughout the decidual stroma and near endometrial gland and spiral vessels in human decidua. The protein expression of VEGF-A and Ang2 was detected in decidual stroma cells, capillary endothelial cells and glandular cells in tissue specimens. There was a positive correlation between microvessel density (MVD) and the number of the CD56-positive uNK cells in decidual stroma, and also between the number of the CD56-positive uNK cells and VEGF-A protein expression in the tissue. In addition, we found that uNK cells in human decidua could express VEGF-A mRNA, but not Ang2 mRNA, in isolated uNK cells in human decidua of the first-trimester gestation by combination of LCM and Nested-PCR. Our study indicated that uNK cells, through expressing VEGF-A, may play an important role in the angiogenic response at the time of human decidualization and early placenta development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app