JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcription of genes encoding synaptic vesicle proteins in human neural stem cells: chromatin accessibility, histone methylation pattern, and the essential role of rest.

Human HNSC.100 neural stem cells up-regulate expression of GFAP following withdrawal of mitogens. Activation of the ERK signaling pathway prevented the up-regulation of GFAP expression. Incubation of cells with retinoic acid in the absence of mitogens enhanced basal neuronal differentiation that was accompanied by an up-regulation of neuronal gene expression and a down-regulation of GFAP and nestin expression. Retinoic acid treatment changed the histone code of neuronal genes encoding synapsin I, synaptophysin, and synaptotagmins II, IV, and VII from a transcriptionally inactive (methylation of lysine residue 9 of histone 3) to a transcriptionally active state (methylation of lysine residue 4 of histone 3). In contrast, the chromatin structure of the GFAP gene is transformed from a transcriptionally active state in unstimulated neural stem cells to a transcriptionally inactive state in retinoic acid-stimulated cells. Additionally, retinoic acid treatment reduced the binding of histone deacetylase-1 and REST to neuronal genes. The inhibition of histone deacetylase activity induced expression of genes encoding synaptic vesicle proteins in unstimulated neural stem cells. Similarly, neuronal gene transcription was enhanced following expression of a mutant of REST that contained a transcriptional activation domain. These data indicate that in undifferentiated human neural stem cells, neuronal genes encoding synaptic vesicle proteins are accessible for the REST mutant and are sensitive to enhanced histone acetylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app