Add like
Add dislike
Add to saved papers

Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment.

Anticancer Research 2007 November
Pancreatic cancer is one of the deadliest forms of cancer and effective treatment remains a clinical challenge. Transforming growth factor-beta (TGF-beta) has important roles in primary tumor progression and in promoting metastasis, and has become an attractive target for therapy. Previously, we reported that treatment of pancreatic cancer cells in vitro with SD-208, a small molecule inhibitor of the TGF-beta receptor I kinase (TGF-betaRI), inhibited expression of genes associated with tumor progression and inhibited invasiveness in a cell-based assay. In a demonstration of efficacy of TGF-beta signaling inhibition in an in vivo model of pancreatic cancer, we showed significantly reduced primary tumor weight and decreased incidence of metastasis in the Panc-1 orthotopic xenograft model of established pancreatic cancer. In this report, we extend these in vivo findings to examine the mechanistic consequences of TGF-betaRI inhibition on Panc-1 primary tumors and their microenvironment in situ. In a longitudinal study of TGF-betaRI inhibition in the Panc-1 orthotopic model, we show that SD-208 treatment significantly reduced tumor growth measured as bioluminescence intensity throughout the study. Histological evaluation revealed that SD-208 treatment reduced proliferation and induced apoptosis in the primary tumors, and reduced fibrosis in the tumor microenvironment. An immune contribution (greater B-cell infiltration in SD-208-treated tumors) was also suggested by the histological analyses. SD-208 not only blocked direct TGF-beta signaling in Panc-1 primary tumors (reduced phospho SMAD2/3), but also down-regulated the expression of TGF-beta-regulated genes (PAI-1 and COL7A1). Taken together, our results indicate that a TGF-betaRI kinase inhibitor has a potential therapeutic benefit for pancreatic cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app