JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Elucidation of susceptible factors to endoplasmic reticulum stress-mediated anticancer activity in human hepatocellular carcinoma.

The initiation of endoplasmic reticulum (ER) stress has been suggested to play potential roles in hepatocarcinogenesis. However, many obstacles remain as to whether ER stress plays a role in carcinogenesis or tumoricide. This study sought to identify the signals that can serve as anticancer effectors in cells in response to ER stress. Tunicamycin (an N-glycosylation inhibitor) inhibited cell proliferation with IC(50) values of 0.19 and 0.62 microg/ml in hepatoma (Hep) 3B and HepG2 cells, respectively. It induced G1 arrest of the cell cycle in both cell lines. The anticancer mechanism of tunicamycin was investigated in Hep3B cells. Tunicamycin induced a rapid decline of cyclin D1 and cyclin A expression and an early increase of glucose-related protein (GRP) 78 and growth arrest and DNA damage-inducible transcription factor (GADD) 153 levels. Cyclin A was the most sensitive regulator to tunicamycin-triggered degradation mechanism. The association of p27(Kip1) with cyclin D1/cyclin-dependent kinase (Cdk) 4 was also increased by tunicamycin. The inhibition of GADD153 expression by transfection of GADD153 antisense did not modify tunicamycin-induced G1 arrest and cyclin/Cdk expressions. The knockdown of GRP78 expression by the siRNA transfection technique moderately increased tunicamycin-induced apoptosis but not the antiproliferative effect by sulforhodamine B assay. We suggest that tunicamycin induces G1 arrest through down-regulation of cyclins and Cdks, in which cyclin A is more susceptible to ER stress-triggered degradation mechanism in Hep3B cells. The increased association of p27(Kip1) with cyclin D1/Cdk4 may also contribute to tunicamycin-induced cell-cycle arrest. GADD153 and GRP78 play a minor role in tunicamycin-mediated antiproliferative effect, although GRP78 moderately inhibits apoptosis in Hep3B cells. These data provide evidence that cell-cycle regulators are susceptible factors in hepatocellular carcinoma (HCC) responsive to ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app