COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration.

A fine balance between anabolic and catabolic mechanisms maintains extracellular matrix homeostasis in articular cartilage, and shifts toward degradation are associated with joint conditions such as osteoarthritis. To test the possible involvement, relevance and significance of the Wnt/beta-catenin-signaling pathway in those catabolic shifts, rabbit articular chondrocyte cultures were subjected to experimental activation of beta-catenin signaling by Wnt3A treatment or forced expression of constitutive-active beta-catenin (CA-beta-catenin). Both interventions provoked strong gelatinase activity and stimulated gene expression of matrix metalloprotease-3 and -13 and a disintegrin-like and metalloprotease with thrombospondin motif (ADAMTS)-4 and -5 proteases. Furthermore, Wnt3A treatment additively enhanced the effects of intereukin-1beta, a well-known catabolic culprit of proteoglycan matrix loss. To determine whether Wnt/beta-catenin signaling is associated with age-associated osteoarthritic changes in articular cartilage in vivo, we analyzed the presence and intracellular distribution of beta-catenin in a spontaneous guinea pig osteoarthritis model. Healthy articular chondrocytes in young guinea pig knees contained barely detectable levels of beta-catenin. In contrast, the protein was highly abundant in osteoarthritic-like chondrocytes present in older guinea pig joints, and was localized not only in the cytoplasm but also the nucleus, a clear reflection of activated Wnt signaling. These and other data suggest that Wnt/beta-catenin signaling is a powerful stimulator of chondrocyte matrix catabolic action and may be part of mechanisms leading to excessive remodeling and degradation of cartilage matrix in age-associated joint pathologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app