JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans.

Microbiology 2008 Februrary
Carbon starvation is a significant stress encountered by the opportunistic fungal pathogen Candida albicans, and mutations in several pathways required to assimilate non-fermentable carbon sources attenuate virulence. These pathways -- beta-oxidation, the glyoxylate cycle and gluconeogenesis -- are compartmentalized in the fungal cell between the peroxisome, mitochondria and cytosol; thus, the cell must transport key intermediates between these organelles. Transport of acetyl-CoA, a particularly important intermediate of carbon metabolism, is catalysed by membrane-associated carnitine acetyltransferases (CATs). We report here the characterization of the three predicted CAT genes in C. albicans, CTN1, CTN2 and CTN3. Strains lacking CTN1 or CTN2 were unable to grow on ethanol or acetate as sole carbon source; additionally, citrate was utilized poorly (Deltactn2) or not at all (Deltactn1) and the Deltactn2 mutant failed to grow on fatty acids as well. In contrast, deletion of CTN3 had no observable phenotype. All three genes were upregulated in the presence of non-fermentable carbon sources and after macrophage phagocytosis. CTN1 and CTN3 were able to complement the corresponding Saccharomyces cerevisiae Deltayat1 and Deltayat2 mutants. However, these mutants had no obvious attenuation in virulence in a mouse model of disseminated candidiasis, in contrast to other carbon metabolism mutants. These findings extend our understanding of nutrient stress in vivo and in vitro and the contribution of metabolic pathways to virulence in C. albicans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app