English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Effect of carbon disulfide on oxidation-antioxidation function of rat nerve tissues.].

OBJECTIVE: To investigate the effect of carbon disulfide (CS(2)) on oxidation-antioxidation function of rat nerve tissues.

METHODS: Thirty male Wistar rats were randomly divided into the control group, the low-dosage exposure group and the high-dosage group, 10 rats each. The rats of the two exposure groups were administered with CS(2) by gavage at a dosage of 300 or 500 mgxkg(-1)xd(-1), 5 times every week for continuous 12 weeks. The alterations in glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), hydrogen peroxidase (CAT) and total anti-oxidation (T-AOC) in cerebrum, spinal cord, and sciatic nerve of CS(2)-treated animals were assayed.

RESULTS: The results showed that the contents of MDA and ROS in nerve tissues of CS(2)-treated groups increased significantly except ROS in spinal cord and sciatic nerve of low dose group. The content of MDA was increased by 20.7% and 33.6% respectively in the cerebrum of the rats of the low-dosage group and the high-dosage group, by 18.5% and 23.3% respectively in the spinal cord, and by 20.7% and 53.0% respectively in the sciatic nerve, The content of MOS was increased by 20.1% and 34.9% respectively in the cerebrum of the rats of the low-dosage group and the high-dosage group, and by 14.1% and 15.4% respectively in the spinal cord and the sciatic nerve of the rats of the high-dosage group (P < 0.05 or P < 0.01). Furthermore, the activities of SOD, GSH-Px, CAT and T-AOC decreased significantly except GSH-Px and SOD in cerebrum of low dose group. The content of GSH was decreased by 17.2% and 26.5% respectively in the cerebrum of the rats of the low-dosage group and the high-dosage group, by 26.4% and 31.2% respectively in the spinal cord, and by 15.1% and 20.0% respectively in the sciatic nerve. The content of T-AOC was decreased by 11.1 and 26.4% respectively in the cerebrum of the rats of the low-dosage group and the high-dosage group, by 15.1% and 38.4% respectively in the spinal cord, and by 35.6% and 42.3% respectively in the sciatic nerve. The activity of SOD was decreased by 12.1% and 25.4% respectively in the spinal cord of the rats of the low-dosage group and the high-dosage group and by 16.4% and 30.3% respectively in the sciatic nerve. The activity of GSH-Px was decreased by 17.3% and 32.5% respectively in the spinal cord of the rats of the low-dosage group and the high-dosage group and by 17.1% and 21.5% respectively in the sciatic nerve. The activity of GSH-Px and SOD was decreased by 12.6% and 30.1% respectively in the cerebrum of the rats of the high-dosage group. The activity of CAT was decreased by 17.5% and 39.4% respectively in the cerebrum of the rats of the low-dosage group and the high-dosage group, by 25.2% and 31.3% respectively in the spinal cord, and by 17.1% and 36.9% respectively in the sciatic nerve (P < 0.05 or P < 0.01).

CONCLUSION: Subchronic exposure to CS(2) can induce significant changes of oxidation-antioxidation function in rat nerve tissues, which might be related to CS(2)-induced neurotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app