Add like
Add dislike
Add to saved papers

Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation.

Anticancer Research 2007 November
Vascular tumours are common lesions of the skin and subcutaneous tissue, but also occur in many other tissues and internal organs. The well-differentiated tumours consist of irregular anastomosing, blood-filled vascular channels that are lined by variably atypical endothelial cells. The less differentiated tumours may show solid strands and sheets, resembling carcinoma or lymphoma. Several growth factors, including basic fibroblast growth factor, transforming growth factors and vascular endothelial growth factor, play a role in tumour angiogenesis. Growth hormone (GH) is mitogenic for a variety of vascular tissue cells, including smooth muscle cells, fibroblasts and endothelial cells and exerts its regulatory functions in controlling metabolism, balanced growth and differentiated cell expression by acting on specific membrane-bound receptors, which trigger a phosphorylation cascade resulting in the modulation of numerous signalling pathways and of gene expression. Essential to the initiation of a cellular response to GH, the presence of receptors for this hormone may predict the adaptation of tumour cells resulting from GH exposure. To address the site/mode of action through which GH exerts its effects, a well characterized monoclonal antibody, obtained by hybridoma technology from Balb/c mice immunized with purified rabbit and rat liver GH-receptor (GHR) and directed against the hormone binding site of the receptor, was applied, using the ABC technique to determine GHR expression in a panel of vascular tumours. The GHR was cloned from a rabbit liver cDNA library with the aid of an oligonucleotide probe based on a 19 residue tryptic peptide sequence derived from 5900 fold purified rabbit liver receptor. A total of 64 benign and malignant vascular tumours were obtained from different human organ sites, including the chest wall, skin, axillary contents, duodenum, female breast, abdomen, stomach, colon, lymph node, bladder, body flank and neck regions. The tumours were of the following pathological entities: Haemangioma (n = 12); haemangioendothelioma (n = 10); Castleman's disease (n = 3), haemangiopericytoma (n = 4); angiosarcoma, (n = 11), Kaposi's sarcoma with focal infiltration by lymphoma, HIV +ve (n = 7), Kaposi's sarcoma (n = 17). The endothelial cell marker CD-31 was used to establish endothelial cell characteristics and microvascular density. To delineate tumour cell growth, immunohistochemical analysis of cycling nuclear protein and of proliferating cell nuclear antigen, using Ki-67 and PCNA polyclonal antibodies respectively, was used to demonstrate proliferative indexes. Results show that, compared to their normal tissue counterparts, nuclear and cytoplasmic expression of GHR consistently result in strong receptor immunoreactivity in the highly malignant angiosarcomas and Kaposi's sarcomas and was localized in the cell membranes and cytoplasm, but strong nuclear immunoreactivity was also identified. The presence of intracellular GHR is the result of endoplasmic reticulum and Golgi localization. Nuclear localization is due to identical nuclear GHR-binding protein. Furthermore, there was a positive correlation of GHR immunoreactivity with neoplastic cellular proliferation and cycling, as measured by Ki-67 and PCNA. In conclusion, this study shows that GHR expression in vascular tumours is a function of malignancy and cancer progression. Malignant cells, which are highly expressive of the receptor, have a greater proliferation rate and thereby also higher survival rate compared to tumours expressing lower or minimal receptor level. The presence of GHR in endothelial cells of vascular neoplasm indicates that they are target cells and GH is of importance in the proliferation of vascular tumour angiogenesis. GH is necessary not only for differentiation of progenitor cells, but also for their subsequent clonal expansion and maintenance. The results support the hypothesis that GH is involved in the paracrine-autocrine mechanism, acting locally in regulating vascular tumour growth and will be useful for site-specific studies of the evolution of vascular cancers. The use of anti-GHR antibodies to block tumour progression is an intriguing possibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app