COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems.

The objective of this study was to compare the osteogenic potential of human embryonic stem cells (hESCs) within two- and three-dimensional (2D and 3D) culture systems. hESCs of the H1 line (Wicell Inc., Madison, Wisc., USA) were induced to form embryoid bodies (EBs) through 5 days of suspension culture within non-adherent culture dishes. Following enzymatic dissociation, the EB-derived single cells were seeded on either novel 3D porous PLGA scaffolds or 2D culture dishes with the same total cell number. Osteogenic differentiation was induced through culture media supplemented with dexamethasone, L-ascorbic acid and beta-glycerophosphate. After 3 weeks of in vitro culture, quantitative and qualitative assays of osteogenic differentiation were conducted. Osteocalcin secretion and alkaline phosphatase (AP) activities were detected at significantly higher levels within 3D culture compared with the 2D system. Subsequently, the cell-scaffold constructs were implanted in iliac crest defects of immunosuppressed rabbits. After 4 weeks, the constructs were subsequently explanted and characterized by histology and X-ray analysis. Formation of new bone was detected within and around the implanted scaffolds. The results demonstrate that the osteogenic differentiation of human embryonic stem cells is enhanced in a 3D culture system compared to a 2D culture environment. Upon implantation in situ, the differentiating human embryonic stem cells can contribute positively to the repair and regeneration of bone defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app