Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.

Bioresource Technology 2008 September
The goal of this study was to develop an applied technique for the removal and recovery of heavy metal in wastewater. It is novel that the Cr(VI) could be adsorbed and recovered by bio-functional magnetic beads. Furthermore, the magnetic separation technology would make their separation more convenient. The beads were constituted by the powder of Rhizopus cohnii and Fe(3)O(4) particles coated with alginate and polyvinyl alcohol (PVA). The parameters effecting Cr(VI) removal were obtained: the optimum pH 1.0 and optimum temperature 28 degrees C. The biosorption took place mainly in form of Cr(VI) and R. cohnii biomass played a key role in Cr(VI) adsorption. The model of Langmuir isotherm and Lagergren could be better used to fit the sorption process and kinetics, respectively. The beads still maintained predominant characteristics of adsorption, recovery and magnetism after five cycles for adsorption-desorption. The mechanism of adsorption was gained by Fourier transform infrared spectroscopy (FTIR), raman spectroscopy (RS) and scanning electron microscopy (SEM). The groups of -NH(3)(+), -NH(2)(+)-, and NH- played an important role in the Cr(VI) adsorption. Consequently, the beads exhibited the superior performances in Cr(VI) cleanup, separation and recovery and the perspective potential in application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app