JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors.

Circulation Research 2008 March 29
Cardiomyocytes actively proliferate during embryogenesis and withdraw from the cell cycle during neonatal stages. FOXO (Forkhead O) transcription factors are a direct target of phosphatidylinositol-3 kinase/AKT signaling in skeletal and smooth muscle and regulate expression of the Cip/Kip family of cyclin kinase inhibitors in other cell types; however, the interaction of phosphatidylinositol-3 kinase/AKT signaling, FOXO transcription factors, and cyclin kinase inhibitor expression has not been reported for the developing heart. Here, we show that FOXO1 and FOXO3 are expressed in the developing myocardium concomitant with increased cyclin kinase inhibitor expression from embryonic to neonatal stages. Cell culture studies show that embryonic cardiomyocytes are responsive to insulin-like growth factor 1 stimulation, which results in the induction of the phosphatidylinositol-3 kinase/AKT pathway, cytoplasmic localization of FOXO proteins, and increased myocyte proliferation. Likewise, adenoviral-mediated expression of AKT promotes cardiomyocyte proliferation and cytoplasmic localization of FOXO. In contrast, increased expression of FOXO1 negatively affects myocyte proliferation. In vivo myocyte-specific transgenic expression of FOXO1 during heart development causes embryonic lethality at embryonic day 10.5 because of severe myocardial defects that coincide with premature activation of p21(cip1), p27(kip1), and p57(kip2) and decreased myocyte proliferation. Transgenic expression of dominant negative FOXO1 in cardiomyocytes does not obviously affect heart development at embryonic day 10.5, but results in abnormal morphology of the myocardium by embryonic day 18.5 along with decreased cyclin kinase inhibitor expression and increased myocyte proliferation. These data support FOXO transcription factors as negative regulators of cardiomyocyte proliferation and promoters of neonatal cell cycle withdrawal during heart development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app