Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.

Toxicity tests were performed to assess the effect of tannery wastewater with different treatment levels on two wetland plants, Phragmites australis and Typha latifolia, which are frequently used in constructed wetlands (CWs) for water treatment, and thus deepen the knowledge on their capacity to withstand the application of industrial wastewater. Trifolium pratense, a plant generally used as an indicator in toxicity tests, was included as a control. End points measured were germination percentage, shoot length, root elongation, and biomass growth of the plants. When tannery effluent, with a low treatment level, was supplied to the wetland plants germination occurred even at effluent concentrations of 100%, whereas germination of T. pratense was completely inhibited, almost invariably, at effluent concentration of 50%. Higher germination levels were achieved when the plants were exposed to effluent originating from the outlet of constructed wetland pilot units, allowing germination of all tested plants, indicating a significant decrease in its toxicity level. Experiments conducted with the same plants using different growing substrata as the germination matrix, namely expanded clay aggregates (Filtralite MR 3-8 and Filtralite NR 3-8) and two types of sand (fine gravel and standard sand) have shown that higher germination levels were achieved in standard sand and that P. australis was the plant species showing higher germination in all cases, reinforcing the robustness of this plant to environmental stress. The phytoextraction potential of P. australis, was evaluated by subjecting the plant to tannery wastewater supplemented with 50 and 150 mg Cr/L. After 6 weeks of exposure, levels up to 4825, 883, and 627 mg Cr/kg were found in the rhizome, shoot, and leaves, respectively, although phytotoxic signs in the plant were evident. This plant might not be considered a chromium hyperacumulator, but the potential to extract and accumulate this metal on its rhizomes is high.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app