Add like
Add dislike
Add to saved papers

A reactive bond orbital investigation of the Diels-Alder reaction between 1,3-butadiene and ethylene: Energy decomposition, state correlation diagram, and electron density analyses.

The reactive bond orbital (RBO) method (Hirao, Chem Phys Lett 2007, 443, 141) is extended and applied to the Diels-Alder reaction between 1,3-butadiene and ethylene, with the aim of understanding the nature of their interaction. The roles of distortion, electrostatic, exchange, polarization, and charge transfer (CT) interaction energies at the transition state of the reaction are evaluated by means of RBO energy decomposition analysis. The effects of the hypothetical interactions on electron density redistribution are also identified by analysis based on the RBO method. CT is shown to play essential roles in the new bond formation between the reacting molecules and their internal bond order alterations. However, each of the CT interactions from butadiene to ethylene and from ethylene to butadiene does not necessarily contribute to the bond-order alteration process effectively. A state correlation diagram approach based on the RBO method is also proposed, and its usefulness in understanding the origin of the barrier in the Diels-Alder reaction is demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app