Add like
Add dislike
Add to saved papers

Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat.

The effects of diabetes on heart function may be initiated or compounded by the exaggerated reliance of the diabetic heart on fatty acids and ketones as metabolic fuels. beta-Blocking agents such as metoprolol have been proposed to inhibit fatty acid oxidation. We hypothesized that metoprolol would improve cardiac function by inhibiting fatty acid oxidation and promoting a compensatory increase in glucose utilization. We measured ex vivo cardiac function and substrate utilization after chronic metoprolol treatment and acute metoprolol perfusion. Chronic metoprolol treatment attenuated the development of cardiac dysfunction in streptozotocin (STZ)-diabetic rats. After chronic treatment with metoprolol, palmitate oxidation was increased in control hearts but decreased in diabetic hearts without affecting myocardial energetics. Acute treatment with metoprolol during heart perfusions led to reduced rates of palmitate oxidation, stimulation of glucose oxidation, and increased tissue ATP levels. Metoprolol lowered malonyl-CoA levels in control hearts only, but no changes in acetyl-CoA carboxylase phosphorylation or AMP-activated protein kinase activity were observed. Both acute metoprolol perfusion and chronic in vivo metoprolol treatment led to decreased maximum activity and decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Metoprolol also increased sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and prevented the reexpression of atrial natriuretic peptide in diabetic hearts. These data demonstrate that metoprolol ameliorates diabetic cardiomyopathy and inhibits fatty acid oxidation in streptozotocin-induced diabetes. Since malonyl-CoA levels are not increased, the reduction in total carnitine palmitoyltransferase I activity is the most likely factor to explain the decrease in fatty acid oxidation. The metabolism changes occur in parallel with changes in gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app