JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways.

The effects of myostatin on adipogenic differentiation are poorly understood, and the underlying mechanisms are unknown. We determined the effects of human recombinant myostatin protein on adipogenesis of bone marrow-derived human mesenchymal stem cells (hMSCs) and adipose tissue-derived preadipocytes. For both progenitor cell types, differentiation in the presence of myostatin caused a dose-dependent reduction of lipid accumulation and diminished incorporation of exogenous fatty acid into cellular lipids. Myostatin significantly down-regulated the expression of adipocyte markers PPARgamma, C/EBPalpha, leptin, and aP2, but not C/EBPbeta. Overexpression of PPARgamma, but not C/EBPbeta, blocked the inhibitory effects of myostatin on adipogenesis. Myostatin induced phosphorylation of Smad3 in hMSCs; knockdown of Smad3 by RNAi or inhibition of its upstream kinase by an Alk5 inhibitor blocked the inhibitory effect of myostatin on adipogenesis in hMSCs, implying an important role of Smad3 activation in this event. Furthermore, myostatin enhanced nuclear translocation of beta-catenin and formation of the Smad3-beta-catenin-TCF4 complex, together with the altered expression of a number of Wnt/beta-catenin pathway genes in hMSCs. The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of beta-catenin and diminished by overexpression of dominant-negative TCF4. The conclusion is that myostatin inhibited adipogenesis in human bone marrow-derived mesenchymal stem cells and preadipocytes. These effects were mediated, in part, by activation of Smad3 and cross-communication of the TGFbeta/Smad signal to Wnt/beta-catenin/TCF4 pathway, leading to down-regulation of PPARgamma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app