COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system.

Human Mutation 2008 April
ATP7B is a copper transporting P-type ATPase defective in the autosomal recessive copper storage disorder, Wilson disease (WND). Functional assessment of variants helps to distinguish normal from disease-causing variants and provides information on important amino acid residues. A total of 11 missense variants of ATP7B, originally identified in WND patients, were examined for their capacity to functionally complement a yeast mutant strain in which the yeast gene ortholog, CCC2, was disrupted. Solution structures of ATP7B domains were used to predict the effects of each variant on ATP7B structure. Three variants lie within the copper-binding domain and eight within the ATP-binding domain of ATP7B. All three ATP7B variants within the copper-binding domain and four within the ATP-binding domain showed full complementation of the yeast ccc2 phenotype. For the remaining four located in the ATP-binding domain, p.Glu1064Lys and p.Val1106Asp were unable to complement the yeast ccc2 high-affinity iron uptake deficiency phenotype, apparently due to mislocalization and/or change in conformation of the variant protein. p.Leu1083Phe exhibited a temperature-sensitive phenotype with partial complementation at 30 degrees C and a severe deficit at 37 degrees C. p.Met1169Val only partially complemented the ccc2 phenotype at 30 degrees C and 37 degrees C. Therefore, four variant positions were identified as important for copper transport and as disease-causing changes. Since the yeast assay specifically evaluates copper transport function, variants with normal transport could be defective in some other aspect of ATP7B function, particularly trafficking in mammalian cells. Functional assessment is critical for reliable use of mutation analysis as an aid to diagnosis of this clinically variable condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app