Add like
Add dislike
Add to saved papers

Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo.

A nonviral gene carrier, calcium carbonate (CaCO3) nanoparticle, was evaluated for efficient in vitro and in vivo delivery of small interfering RNA (siRNA) targeting vascular endothelial growth factor-C (VEGF-C). The chemically synthesized CaCO3 nanoparticle has a 58 nm diameter and +28.6 mV positive surface charge. It is capable of forming a CaCO3 nanoparticle-DNA complex and transferring DNA into targeted cells with high transfection efficiency while effectively protecting the encapsulated DNA from degradation. Furthermore, the CaCO3 nanoparticle-DNA complex has no obvious cytotoxicity for SGC-7901 cells, while a liposome-DNA complex exhibited measurable cytotoxicity. SGC-7901 cells transfected with a VEGF-C-targeted siRNA via CaCO3 nanoparticle exhibit significantly reduced VEGF-C expression as measured by real-time PCR and enzyme-linked immunosorbent assay; whereas no decrease in VEGF-C expression is observed in cells treated by control transfection. Transfection of SGC-7901 cells with VEGF-C siRNA via CaCO3 nanoparticle also dramatically suppresses tumor lymphangiogenesis, tumor growth and regional lymph-node metastasis in subcutaneous xenografts. Significant downregulation of VEGF-C messenger RNA expression in a subcutaneous xenograft derived from VEGF-C siRNA-treated SGC-7901 cells was confirmed by real-time PCR as compared to controls. We conclude that CaCO3 nanoparticle is a novel and nonviral system for effective delivery of siRNA for cancer gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app