Helicobacter pylori-induced H,K-ATPase alpha-subunit gene repression is mediated by NF-kappaB p50 homodimer promoter binding

Arindam Saha, Charles E Hammond, Maria Trojanowska, Adam J Smolka
American Journal of Physiology. Gastrointestinal and Liver Physiology 2008, 294 (3): G795-807
Infection of human gastric body mucosa by the gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and a transitory hypochlorhydria that progresses in approximately 2% of patients to atrophic gastritis, dysplasia, and gastric adenocarcinoma. We have previously shown that H. pylori infection of cultured gastric epithelial cells (AGS) represses the activity of the transfected alpha-subunit (HKalpha) promoter of H,K-ATPase, the parietal cell enzyme mediating acid secretion. However, the mechanistic details of H. pylori-mediated repression of HKalpha and ensuing hypochlorhydria are unknown. H. pylori is known to upregulate the transcription factor NF-kappaB through the ERK1/2 MAPK pathway. We identified NF-kappaB-binding regions in the HKalpha promoter and found that H. pylori inoculation of AGS cells increased NF-kappaB p50 binding to the transfected HKalpha promoter and repressed its transcriptional activity. Immunoblot and DNA-protein interaction studies showed that although active phosphorylated NF-kappaB p65 is present in H. pylori-infected AGS cells, an NF-kappaB p50/p65 heterodimeric complex fails to bind to the HKalpha promoter. Point mutations at -159 and -161 bp in the HKalpha promoter NF-kappaB binding sequence prevented binding of NF-kappaB p50 and prevented H. pylori repression of point-mutated HKalpha promoter activity in transfected AGS cells. Small interfering RNA-mediated knockdown of NF-kappaB p50 in H. pylori-infected AGS cells also abrogated H. pylori-induced HKalpha repression, whereas NF-kappaB p65 knockdown did not. We conclude that H. pylori inhibits HKalpha gene expression by ERK1/2-mediated NF-kappaB p50 homodimer binding to the HKalpha promoter. This study identifies a novel pathogen-dependent mechanism of H,K-ATPase inhibition and contributes to understanding of H. pylori pathophysiology.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"