JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes.

Pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and other catabolic factors participate in the pathogenesis of cartilage damage in osteoarthritis (OA). Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) mediate cartilage degradation and might be involved in the progression of OA. Previously, we found that haem oxygenase-1 (HO-1) is down-regulated by pro-inflammatory cytokines and up-regulated by IL-10 in OA chondrocytes. The aim of this study was to determine whether HO-1 can modify the catabolic effects of IL-1beta in OA cartilage and chondrocytes. Up-regulation of HO-1 by cobalt protoporphyrin IX significantly reduced glycosaminoglycan degradation elicited by IL-1beta in OA cartilage explants but increased glycosaminoglycan synthesis and the expression of collagen II in OA chondrocytes in primary culture, as determined by radiometric procedures, immunoblotting and immunocytochemistry. HO-1 decreased the activation of extracellular signal-regulated kinase 1/2. This was accompanied by a significant inhibition in MMP activity and expression of collagenases MMP-1 and MMP-13 at the protein and mRNA levels. In addition, HO-1 induction caused a significant increase in the production of insulin-like growth factor-1 and a reduction in the levels of insulin-like growth factor binding protein-3. We have shown in primary culture of chondrocytes and articular explants from OA patients that HO-1 counteracts the catabolic and anti-anabolic effects of IL-1beta. Our data thus suggest that HO-1 may be a factor regulating the degradation and synthesis of extracellular matrix components in OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app