COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Impact of common epidermal growth factor receptor and HER2 variants on receptor activity and inhibition by lapatinib.

Cancer Research 2008 January 16
The goal of this study was to characterize the effects of non-small cell lung carcinoma (NSCLC)-associated mutations in epidermal growth factor receptor (EGFR/ErbB1) and HER2 (ErbB2) on interactions with the dual tyrosine kinase inhibitor lapatinib. Biochemical studies show that commonly observed variants of EGFR [G719C, G719S, L858R, L861Q, and Delta746-750 (del15)] are enzyme activating, increasing the tyrosine kinase V(max) and increasing the K(m)((app)) for ATP. The point mutations G719C and L861Q had minor effects on lapatinib K(i)s, whereas EGFR mutations L858R and del15 had a higher K(i) for lapatinib than wild-type EGFR. Structural analysis of wild-type EGFR-lapatinib complexes and modeling of the EGFR mutants were consistent with these data, suggesting that loss of structural flexibility and possible stabilization of the active-like conformation could interfere with lapatinib binding, particularly to the EGFR deletion mutants. Furthermore, EGFR deletion mutants were relatively resistant to lapatinib-mediated inhibition of receptor autophosphorylation in recombinant cells expressing the variants, whereas EGFR point mutations had a modest or no effect. Of note, EGFR T790M, a receptor variant found in patients with gefitinib-resistant NSCLC, was also resistant to lapatinib-mediated inhibition of receptor autophosphorylation. Two HER2 insertional variants found in NSCLC were less sensitive to lapatinib inhibition than two HER2 point mutants. The effects of lapatinib on the proliferation of human NSCLC tumor cell lines expressing wild-type or variant EGFR and HER2 cannot be explained solely on the basis of the biochemical activity or receptor autophosphorylation in recombinant cells. These data suggest that cell line genetic heterogeneity and/or multiple determinants modulate the role played by EGFR/HER2 in regulating cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app