JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lysine-specific demethylase 1 (LSD1) Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene.

BACKGROUND: Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process.

METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs) were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter.

CONCLUSIONS/SIGNIFICANCE: LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of hTERT/telomerase regulation, which may be implicated in the development of therapeutic strategies for telomerase dysregulation-associated human diseases including cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app