Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.

Prostate 2008 March 2
BACKGROUND: Recently we reported that silencing the androgen receptor (AR) gene reduced Bcl-xL expression that was associated with a profound apoptotic cell death in prostate cancer cells. In this study we further investigated AR-regulated Bcl-xL expression.

METHODS: Prostate cancer cell line LNCaP and its sublines, LNCaP/PURO and LNCaP/Bclxl, were used for cell proliferation assay and xenograft experiments in nude mice. Luciferase gene reporters driven by mouse or human bcl-x gene promoter were used to determine androgen regulation of Bcl-xL expression. RT-PCR and Western blot assays were conducted to assess Bcl-xL gene expression. Chromatin immunoprecipitation assay was performed to determine AR interaction with Bcl-xL promoter. Bcl-xL-induced alteration of gene expression was examined using cDNA microarray assay.

RESULTS: In cultured prostate cancer LNCaP cells, androgen treatment significantly increased Bcl-xL expression at mRNA and protein levels via an AR-dependent mechanism. Promoter analyses demonstrated that the AR mediated androgen-stimulated bcl-x promoter activation and that the AR interacted with bcl-x promoter. Enforced expression of Bcl-xL gene dramatically increased cell proliferation in vitro and promoted xenograft tumor growth in vivo. Genome-wide gene profiling analysis revealed that Bcl-xL expression was significantly higher in metastatic and castration-resistant diseases compared to normal prostate tissues or primary cancers. Bcl-xL overexpression significantly increased the expression of cyclin D2, which might be responsible for Bcl-xL-induced cell proliferation and tumor growth.

CONCLUSIONS: Taken together, our data strongly suggest that androgen stimulates Bcl-xL expression via the AR and that increased Bcl-xL expression plays a versatile role in castration-resistant progression of prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app