JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress.

Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (-18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 (n = 10). In study 2 (n = 14), test duration (871 +/- 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 +/- 278 s) compared with control (750 +/- 281 s) (P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app