Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Feasibility of transdermal ethanol sensing for the detection of intoxicated drivers.

Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system. However, experimental data from previous research has shown significant time delays between alcohol ingestion and detection at the skin which makes real time estimation of blood alcohol concentration via skin measurement difficult. Using a validated model we studied the effects that body weight, metabolic rate and ethanol dose had on the time lag between the blood alcohol concentration and transdermal alcohol concentration. The dose of alcohol ingested was found to have the most significant effect on the skin alcohol lag time; a dose of 15 ml of ethanol resulted in a peak lag time of approximately 33 minutes, while a dose of 60 ml of ethanol resulted in a peak time lag of 53 minutes. The time lag was found to be insensitive to body mass and only moderately sensitive to changes in metabolic rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app