RESEARCH SUPPORT, NON-U.S. GOV'T
Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc.
CONTEXT: Mitochondrial cytochrome P450scc converts cholesterol to pregnenolone in all steroidogenic tissues. Although progesterone production from the fetally-derived placenta is necessary to maintain pregnancy to term, four patients with mutations in the gene encoding P450scc (CYP11A1), have been described, one in a 46,XX female and three in underandrogenized 46,XY individuals, all with primary adrenal failure.
OBJECTIVE: Our aim was to determine whether P450scc mutations might be found in other children and to explore genotype/phenotype correlations.
METHODS AND PATIENTS: We performed mutational analysis of CYP11A1 in individuals with 46,XY disorders of sex development and primary adrenal failure, followed by functional studies of P450scc activity and of P450scc RNA splicing.
RESULTS: Among nine 46,XY infants with adrenal failure and disordered sexual differentiation, two infants had compound heterozygous mutations in CYP11A1. One patient harbored the novel P450scc missense mutations L141W and V415E, which retained 38 and 0% activity, respectively. The other carried a CYP11A1 frameshift mutation c835delA (0% activity) and a splice site mutation [IVS3+(2-3)insT] that prevented correct splicing of P450scc mRNA.
CONCLUSIONS: P450scc deficiency is a recently recognized disorder that may be more frequent than originally thought. The phenotypic spectrum ranges from severe loss-of-function mutations associated with prematurity, complete underandrogenization, and severe, early-onset adrenal failure, to partial deficiencies found in children born at term with clitoromegaly and later-onset adrenal failure. In contradistinction to congenital lipoid adrenal hyperplasia caused by steroidogenic acute regulatory protein mutations, adrenal hyperplasia has not been reported in any of the six patients with P450scc deficiency.
OBJECTIVE: Our aim was to determine whether P450scc mutations might be found in other children and to explore genotype/phenotype correlations.
METHODS AND PATIENTS: We performed mutational analysis of CYP11A1 in individuals with 46,XY disorders of sex development and primary adrenal failure, followed by functional studies of P450scc activity and of P450scc RNA splicing.
RESULTS: Among nine 46,XY infants with adrenal failure and disordered sexual differentiation, two infants had compound heterozygous mutations in CYP11A1. One patient harbored the novel P450scc missense mutations L141W and V415E, which retained 38 and 0% activity, respectively. The other carried a CYP11A1 frameshift mutation c835delA (0% activity) and a splice site mutation [IVS3+(2-3)insT] that prevented correct splicing of P450scc mRNA.
CONCLUSIONS: P450scc deficiency is a recently recognized disorder that may be more frequent than originally thought. The phenotypic spectrum ranges from severe loss-of-function mutations associated with prematurity, complete underandrogenization, and severe, early-onset adrenal failure, to partial deficiencies found in children born at term with clitoromegaly and later-onset adrenal failure. In contradistinction to congenital lipoid adrenal hyperplasia caused by steroidogenic acute regulatory protein mutations, adrenal hyperplasia has not been reported in any of the six patients with P450scc deficiency.
Full text links
Trending Papers
Management of Heart Failure With Preserved Ejection Fraction in Elderly Patients: Effectiveness and Safety.Curēus 2023 Februrary
EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update.Annals of the Rheumatic Diseases 2023 March 17
What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD).Journal of Clinical Medicine 2023 Februrary 27
BTS clinical statement on aspiration pneumonia.Thorax 2023 Februrary
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app