JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65.

In this study, we have identified protein kinase A-interacting protein 1 (AKIP1) as a binding partner of NF-kappaB p65 subunit, and AKIP1 enhances the NF-kappaB-mediated gene expression. AKIP1 is a nuclear protein and known to interact with the catalytic subunit of PKA (PKAc). We identified AKIP1 by a yeast two-hybrid screen using the N terminus region of p65 as bait. The interaction between AKIP1 and p65 was confirmed by glutathione S-transferase pull-down assay in vitro and immunoprecipitation-Western blotting assay in vivo. We found that the PKAc was present in the AKIP1.p65 complex and enhanced the transcriptional activity of NF-kappaB by phosphorylating p65. In a transient luciferase assay, AKIP1 cotransfection efficiently increased the transcriptional activity of NF-kappaB induced by phorbol 12-myristate 13-acetate (PMA). When AKIP1 was knocked down by RNA interference, the PMA-mediated NF-kappaB-dependent gene expression was abolished, indicating a physiological role of AKIP1. We found that PKAc, which is maintained in an inactive form by binding to IkappaBalpha and NF-kappaB in resting cells, was activated by PMA-induced signaling and could phosphorylate p65. Overexpression of AKIP1 increased the PKAc binding to p65 and enhanced the PKAc-mediated phosphorylation of p65 at Ser-276. Interestingly, this p65 phosphorylation promoted nuclear translocation of p65 and enhanced NF-kappaB transcription. In fact, we observed that AKIP1 colocalized with p65 within the cells and appeared to retain p65 in nucleus. These findings indicate a positive role of AKIP1 in NF-kappaB signaling and suggest a novel mechanism by which AKIP1 augments the transcriptional competence of NF-kappaB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app