RESEARCH SUPPORT, NON-U.S. GOV'T
Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis.
Journal of Medical Genetics 2008 June
BACKGROUND: Patients with a microscopically visible deletion of the distal part of the long arm of chromosome 1 have a recognisable phenotype, including mental retardation, microcephaly, growth retardation, a distinct facial appearance and various midline defects including corpus callosum abnormalities, cardiac, gastro-oesophageal and urogenital defects, as well as various central nervous system anomalies. Patients with a submicroscopic, subtelomeric 1qter deletion have a similar phenotype, suggesting that the main phenotype of these patients is caused by haploinsufficiency of genes in this region.
OBJECTIVE: To describe the clinical presentation of 13 new patients with a submicroscopic deletion of 1q43q44, of which nine were interstitial, and to report on the molecular characterisation of the deletion size.
RESULTS AND CONCLUSIONS: The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.
OBJECTIVE: To describe the clinical presentation of 13 new patients with a submicroscopic deletion of 1q43q44, of which nine were interstitial, and to report on the molecular characterisation of the deletion size.
RESULTS AND CONCLUSIONS: The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.
Full text links
Trending Papers
Clinical Evidence and Proposed Mechanisms for Cardiovascular and Kidney Benefits from Sodium-Glucose Co-transporter-2 Inhibitors.TouchREVIEWS in endocrinology. 2022 November
Management of Latent Tuberculosis Infection.JAMA 2023 January 20
The Difficult Airway Redefined.Prehospital and Disaster Medicine 2022 November 10
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app