Add like
Add dislike
Add to saved papers

Hydrodynamic flows in electrowetting.

Hydrodynamic flows are generated inside a droplet in electrowetting when an ac voltage is applied. To discover the characteristics and origin of the flows, we investigated the flow pattern for a sessile droplet for various needle-electrode positions, electrolyte concentrations, and applied electrical frequencies. Two distinct types of flows were observed under current experimental conditions. In the typical experimental condition, a quite fast flow appears in the low-frequency range of about 10 Hz to 15 kHz. A different type of flow is observed in the high-frequency range of about 35 to 256 kHz, but this frequency range depends significantly on the electrolyte concentration. Most typically, the flow directions are different for the two flows. A shape oscillation of a droplet was observed in the low-frequency range by a high-speed camera. The flow in the low-frequency range is insensitive to the conductivity of the solution and may be caused by the interfacial oscillation of the droplet. The flow at high frequency is very sensitive to the conductivity of the solution and electrode position, so the high-frequency flow is believed to be caused by some electrohydrodynamic effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app