JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diarylheptanoids and a monoterpenoid from the rhizomes of Zingiber officinale: antioxidant and cytoprotective properties.

Three new diarylheptanoids and one new monoterpenoid were isolated from the rhizomes of Zingiber officinale together with four known diarylheptanoids, 5-8. Their structures were elucidated mainly by spectroscopic methods, and they were deduced as 5-[4-hydroxy-6-(4-hydroxyphenethyl)tetrahydro-2 H-pyran-2-yl]-3-methoxybenzene-1,2-diol (1), sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3 S-sulfonate (2), sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3 R-sulfonate (3), and hydroxycineole-10-O-beta-D-glucopyranoside (4), respectively. Among the isolated compounds, compounds 1, 5, and 8 exhibited strong superoxide anion radical scavenging activities in a phenazine methosulfate-NADH system. In a more biological system, these compounds were demonstrated to exhibit potent protection against lipid peroxidation in mouse liver microsomes exposed to oxidative conditions. These compounds were subsequently tested on primary cultures of rat hepatocytes exposed to oxidative damage, and definitive cytoprotective actions were found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app