JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats.

Exercise training is commonly prescribed for treatment of nonalcoholic fatty liver disease (NAFLD). We sought to determine whether exercise training prevents the development of NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to elucidate the molecular mechanisms underlying the effects of exercise on hepatic steatosis. Four-week-old OLETF rats were randomly assigned to either a sedentary control group (Sed) or a group given access to voluntary running wheels for 16 wk (Ex). Wheels were locked 2 days before euthanasia in the Ex animals, and both groups were euthanized at 20 wk old. Voluntary wheel running attenuated weight gain and reduced serum glucose, insulin, free fatty acids, and triglycerides in Ex animals compared with Sed (P < 0.001). Ex animals exhibited significantly reduced hepatic triglyceride levels and displayed fewer lipid droplets (Oil Red O staining) and reduced lipid droplet size compared with Sed. Wheel running increased by threefold the percent of palmitate oxidized completely to CO(2) in the Ex animals but did not alter AMP-activated protein kinase-alpha (AMPKalpha) or AMPK phosphorylation status. However, fatty acid synthase and acetyl-coenzyme A carboxylase (ACC) content were significantly reduced (approximately 70 and approximately 35%, respectively), and ACC phosphorylation and cytochrome c content were significantly elevated (approximately 35 and approximately 30%, respectively) in the Ex animals. These results unequivocally demonstrate that daily physical activity attenuates hepatic steatosis and NAFLD in an obese rodent model and suggest that this effect is likely mediated, in part, through enhancement of hepatic fatty acid oxidation and reductions in key protein intermediates of fatty acid synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app