Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men

Emilie M Simoneau, Maxime Billot, Alain Martin, Jacques Van Hoecke
Journal of Electromyography and Kinesiology 2009, 19 (2): e123-31
A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (-15%; p=0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (-39%; p=0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p=0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p>0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"