Add like
Add dislike
Add to saved papers

Supersonic molecular beam studies of dissociative adsorption of H2 on Ru(0001).

We examined reactivity of H(2) on Ru(0001) using molecular beam techniques and we compared our results to experimental results for similar systems. The dissociative adsorption of H(2) on Ru(0001) is similar to that on Pt(111) and Ni(111), although on ruthenium nonactivated adsorption is strongly suggested. However, we find no clear signature of a steering- or precursor-based mechanism that favors nonactivated reaction paths at low kinetic energy. In comparison to Pd(111) and Rh(111) our results indicate that a universal mechanism enhancing reactivity at low energy does not have a mass dependence. In addition, we have compared our results to predictions of reactivity for H(2) on Ru(0001) from six-dimensional dynamical calculations using two different generalized gradient approximation functionals. It leads us to conclude that the PW91 functional yields a more accurate value for the minimum energy path but does not impose enough corrugation in the potential. The revised-Perdew-Burke-Ernzerhof (RPBE) functional appears to behave slightly better at higher energies, but we find significant quantitative disagreement. We show that the difference is not due to different energy resolutions between experiment and theory. However, it may be due to a dependence of the reactivity on rotational state or on omission of relevant dimensions in the theoretical description.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app