Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Characterization of a modular, cell-surface protein and identification of a new gene family in the diatom Thalassiosira pseudonana.

Protist 2008 April
We report the characterization of a cell-surface protein isolated from copper-stressed cells of the centric diatom Thalassiosira pseudonana Hasle and Heimdal (CCMP 1335). This protein has an apparent molecular weight of 100kDa and is highly acidic. The 100kDa protein (p100) sequence is comprised almost entirely of a novel domain termed TpRCR for T. pseudonana repetitive cysteine-rich domain, that is repeated 8 times and that contains conserved aromatic, acidic, and potential metal-binding amino acids. The analysis of the T. pseudonana genome suggests that p100 belongs to a large family of modular proteins that consist of a variable number of TpRCR domain repeats. Based on cell surface biotinylation and antibody data, p100 appears to migrate more rapidly with SDS-PAGE when extracted from cells exposed to high levels of copper; however, the discovery of a large family of TpRCR domain-containing proteins leaves open the possibility that the antibody may be cross-reacting with members of this protein family that are responding differently to copper. The response of the gene encoding p100 at the mRNA level during synchronized progression through the normal cell cycle is similar to previously characterized genes in T. pseudonana encoding cell wall proteins called silaffins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app