Bayesian optimal design for phase II screening trials

Meichun Ding, Gary L Rosner, Peter Müller
Biometrics 2008, 64 (3): 886-94
Most phase II screening designs available in the literature consider one treatment at a time. Each study is considered in isolation. We propose a more systematic decision-making approach to the phase II screening process. The sequential design allows for more efficiency and greater learning about treatments. The approach incorporates a Bayesian hierarchical model that allows combining information across several related studies in a formal way and improves estimation in small data sets by borrowing strength from other treatments. The design incorporates a utility function that includes sampling costs and possible future payoff. Computer simulations show that this method has high probability of discarding treatments with low success rates and moving treatments with high success rates to phase III trial.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"