JOURNAL ARTICLE

Rotamerism, tautomerism, and excited-state intramolecular proton transfer in 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazoles: novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer

Sonia Ríos Vazquez, M Carmen Ríos Rodríguez, Manuel Mosquera, Flor Rodríguez-Prieto
Journal of Physical Chemistry. A 2008 January 24, 112 (3): 376-87
18154323
The solvent and temperature dependence of the phototautomerization of 1-methyl-2-(2'-hydroxyphenyl)benzimidazole (4) and the novel compounds 2-(4'-amino-2'-hydroxyphenyl)benzimidazole (1), 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (2), and 1-methyl-2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (3), together with the ground-state rotamerism and tautomerism of these new compounds, have been studied by UV-vis absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. A solvent-modulated rotameric and tautomeric equilibrium is observed in the ground state for 1, 2, and 3. In cyclohexane, these compounds mainly exist as a planar syn normal form, with the hydroxyl group hydrogen-bonded to the benzimidazole N3. In ethanol, the syn form is in equilibrium with its planar anti rotamer (for 1 and 2), with the phenyl ring rotated 180 degrees about the C2-C1' bond and with a nonplanar rotamer for compound 3. In aqueous solution, a tautomeric equilibrium is established between the anti normal form (or the nonplanar rotamer for 3) and the tautomer (with the hydroxyl proton transferred to the benzimidazole N3). The syn normal form of these compounds undergoes in all the solvents an excited-state intramolecular proton-transfer process from the hydroxyl group to the benzimidazole N3 to yield the excited tautomer. The tautomer fluorescence quantum yield of 2, 3, and 4 shows a temperature-, polarity-, and viscosity-dependent radiationless deactivation, connected with a large-amplitude conformational motion. We conclude that this excited-state conformational change experienced by the tautomer is associated with an intramolecular charge transfer from the deprotonated dialkylaminophenol or phenol (donor) to the protonated benzimidazole (acceptor), affording a nonfluorescent charge-transfer tautomer. Therefore, these compounds undergo an excited-state intramolecular coupled proton- and charge-transfer process.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18154323
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"