Add like
Add dislike
Add to saved papers

Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate-co-(poly(ethylene glycol)-methacrylate]: biomedical application in a novel rabbit penile prosthesis model.

In this work, preparation and characterization of novel three different antibiotic loaded penile prosthesis in the rod form were investigated by copolymerization of 2-hydroxyethylmethacrylate (HEMA) with poly(ethylene glycol)-methacrylate, (PEG-MA). To achieve this goal, a series of novel copolymer hydrogels were prepared in rod form using HEMA and PEG-MA monomers via UV initiated photopolymerization. The thermal stability of the copolymer was found to be lowered by increase in the ratio of PEG-MA in the rod structure. Contact angle measurements on the surface of copolymer hydrogel demonstrated that the copolymer gave rise to a significant hydrophilic surface compared with pure poly(HEMA). The blood protein adsorption and platelet adhesion were significantly reduced on the surface of the copolymer hydrogels compared with control pure poly(HEMA). Poly(HEMA:PEG-MA;1:1)-1 formulation containing different antibiotics (20 mg antibiotic/g polymer) released about 90, 91, and 55% of the total loaded cephtriaxon, vancomycin, and gentamicin in 48 h at pH 7.4, respectively. Finally, antibiotics loaded biocompatible poly(HEMA:PEG-MA;1:1)-1 hydrogel compositions was used as a penile prosthesis in preventing cavernous tissue infections in a rabbit prosthesis model. The efficacy of the three different antibiotics loaded hydrogel system was evaluated in four different groups of rabbits, in which various infectious agents were inoculated. The animals were sacrificed after predetermined time periods, and clinical, histological and microbiological assessment on the implant side were carried out to detect infections. Eventually, we concluded that three different antibiotic loaded penile prostheses (i.e. poly(HEMA:PEG-MA;1:1)-1 hydrogel systems) were as effective as parenteral antibiotics applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app