Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lgl and its phosphorylation by aPKC regulate oocyte polarity formation in Drosophila.

Development 2008 Februrary
Specification of the anteroposterior (AP) axis in Drosophila oocytes requires proper organization of the microtubule and actin cytoskeleton. The establishment and regulation of cytoskeletal polarity remain poorly understood, however. Here, we show important roles for the tumor suppressor Lethal (2) giant larvae (Lgl) and atypical protein kinase C (aPKC) in regulating microtubule polarity and setting up the AP axis of the oocyte. Lgl in the germline cells regulates the localization of axis-specifying morphogens. aPKC phosphorylation of Lgl restricts Lgl activity to the oocyte posterior, thereby dividing the cortex into different domains along the AP axis. Active Lgl promotes the formation of actin-rich projections at the oocyte cortex and the posterior enrichment of the serine/threonine kinase Par-1, a key step for oocyte polarization. Our studies suggest that Lgl and its phosphorylation by aPKC may form a conserved regulatory circuitry in polarization of various cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app