Add like
Add dislike
Add to saved papers

Larval development of Japanese 'conchostracans': part 2, larval development of Caenestheriella gifuensis (Crustacea, Branchiopoda, Spinicaudata, Cyzicidae), with notes on homologies and evolution of certain naupliar appendages within the Branchiopoda.

As part of a larger project examining and comparing the ontogeny of all major taxa of the Branchiopoda in a phylogenetic context, the larval development of Caenestheriella gifuensis (Ishikawa, 1895), a Japanese spinicaudatan 'conchostracan', is described by scanning electron microscopy. Seven different larval stages are recognised, in most cases based on significant morphological differences. They range in length from about 200 to 850mum. Nauplius 1 has a plumb and lecithotrophic appearance with a rounded hind body and a labrum with an incipient medial spine. Limb segmentation is mostly unclear but the second antennae have more putative segments delineated than are expressed in the later stages. Feeding structures such as the mandibular coxal process and antennal coxal spine are only weakly developed. Nauplius 2 is very different from nauplius 1 and has three large spines on the labral margin and two long caudal spines. Feeding structures such as the mandibular coxal process and various spines and setae are developed, but whether feeding begins at this stage was not determined. The mandible has developed an 'extra' seta on endopod segment 1, absent in Nauplius 1. The segmentation of the second antenna has changed significantly due to fusions of various early segments. Nauplius 3 is like nauplius 2 in morphological detail, but larger and more elongate. Nauplius 4 has developed a pair of small anlagen of the carapace and rudiments of the first five pairs of trunk limbs, and the coxal spine of the antenna has become distally bifid. Nauplius 5 has a larger carapace anlage, externally visible enditic portions of the elongate trunk limbs, and a pair of primordial dorsal telson setae. Nauplius 6 has a larger and partly free carapace and better-developed, partly free trunk limbs with incipient enditic, endopodal, and exopodal setation. A pair of caudal spines, dorsal to the large caudal spines, has appeared. Nauplius 7 is quite similar to nauplius 6 but is larger and has slightly longer caudal and labral spines; also, the setation of the most anterior trunks limbs is better developed. The larval development is largely similar to that of other spinicaudatans. The larval mandible, which is evolutionarily conservative within the Branchiopoda, reveals a setation pattern similar to that of the Anostraca and Notostraca (two setae on mandibular endopod segment 1). Most other spinicaudatans and all examined laevicaudatans share another setal pattern (one seta on mandibular endopod segment 1), which could indicate a close relationship among these taxa. The second antenna undergoes a special development, which provides an insight into the evolution of this limb within the Branchiopoda. In nauplius 1 the basipod, endopod, and exopod are all superficially divided into a relatively high number of segments. In later nauplii some of these have fused, forming fewer but larger segments. We suggest that this ontogeny reflects the evolution of antennae in the conchostracans. Various aspects of the morphology of the antennae are discussed as possible synapormorphies for either the Diplostraca or subgroups of the Conchostraca.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app