Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn.

Glycine is an important inhibitory neurotransmitter in the spinal cord, but it also acts as a coagonist at the glycine site of N-methyl-d-aspartate (NMDA) receptors to potentiate nociceptive transmission. However, little is known about how increased nociceptive inflow alters synaptic glycine release in the spinal dorsal horn and its functional significance. In this study, we performed whole-cell recordings in rat lamina II neurons to record glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs). The transient receptor potential vanilloid receptor 1 agonist capsaicin caused a prolonged increase in the frequency of sIPSCs in 17 of 25 (68%) neurons tested. The potentiating effect of capsaicin on sIPSCs was blocked by ionotropic glutamate receptor antagonists or tetrodotoxin in most lamina II neurons examined. In contrast, the P2X agonist alphabeta-methylene-ATP increased sIPSCs in only two of 16 (12.5%) neurons. The glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid either increased or reduced the basal frequency of sIPSCs but did not significantly alter the potentiating effect of capsaicin on sIPSCs. Furthermore, the groups II and III metabotropic glutamate receptor antagonists had no significant effect on the capsaicin-induced increase in the sIPSC frequency. Although capsaicin reduced the amplitude of evoked excitatory postsynaptic currents at high stimulation currents, it did not change the ratio of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/NMDA currents. This study provides the important new information that increased nociceptive inflow augments synaptic glycine release to spinal dorsal horn neurons through endogenous glutamate release. Potentiation of inhibitory glycinergic tone by stimulation of nociceptive primary afferents may function as a negative feedback mechanism to attenuate nociceptive transmission at the spinal level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app