JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Privileged scaffolds targeting reverse-turn and helix recognition.

BACKGROUND: Protein-protein interactions dominate molecular recognition in biologic systems. One major challenge for drug discovery arises from the very large surfaces that are characteristic of many protein-protein interactions.

OBJECTIVES: To identify 'drug-like' small molecule leads capable of modulating protein-protein interactions based on common protein-recognition motifs, such as alpha-helices, beta-strands, reverse-turns and polyproline motifs for example.

OVERVIEW: Many proteins/peptides are unstructured under physiologic conditions and only fold into ordered structures on binding to their cellular targets. Therefore, preorganization of an inhibitor into its protein-bound conformation reduces the entropy of binding and enhances the relative affinity of the inhibitor. Accordingly, this review describes a general strategy to address the challenge based on the 'privileged structure hypothesis' [Che, PhD thesis, Washington University, 2003] that chemical templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as small-molecule inhibitors of protein-protein interactions. The authors highlight recent advances in the design of privileged scaffolds targeting reverse-turn and helical recognition.

CONCLUSIONS: Privileged scaffolds targeting common protein-recognition motifs are useful to help elucidate the receptor-bound conformation and to provide non-peptidic, bioavailable substructures suitable for optimization to modulate protein-protein interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app