Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Retracted Publication
Add like
Add dislike
Add to saved papers

Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets.

Diabetes 2008 March
OBJECTIVE: Type 2 diabetes is characterized by impaired insulin secretion in response to increased metabolic demand. This defect in beta-cell compensation seems to result from the interplay between environmental factors and genetic predisposition. Genome-wide association studies reveal that common variants in transcription factor 7-like 2 (TCF7L2) are associated with increased risk of type 2 diabetes. The aim of the present study was to establish whether TCF7L2 plays a role in beta-cell function and/or survival.

RESEARCH DESIGN AND METHODS: To investigate the effects of TCFL7L2 depletion, isolated islets were exposed to TCF7L2 small interfering RNA (siRNA) versus scrambled siRNA, and beta-cell survival and function were examined. For TCF7L2 overexpression, islets were cultured in glucose concentrations of 5.5-33.3 mmol/l and the cytokine mix interleukin-1 beta/gamma-interferon with or without overexpression of TCF7L2. Subsequently, glucose-stimulated insulin secretion (GSIS), beta-cell apoptosis [by transferase-mediated dUTP nick-end labeling assay and Western blotting for poly(ADP-ribose) polymerase and Caspase-3 cleavage], and beta-cell proliferation (by Ki67 immunostaining) were analyzed.

RESULTS: Depleting TCF7L2 by siRNA resulted in a 5.1-fold increase in beta-cell apoptosis, 2.2-fold decrease in beta-cell proliferation (P < 0.001), and 2.6-fold decrease in GSIS (P < 0.01) in human islets. Similarly, loss of TCF7L2 resulted in impaired beta-cell function in mouse islets. In contrast, overexpression of TCF7L2 protected islets from glucose and cytokine-induced apoptosis and impaired function.

CONCLUSIONS: TCF7L2 is required for maintaining GSIS and beta-cell survival. Changes in the level of active TCF7L2 in beta-cells from carriers of at-risk allele may be the reason for defective insulin secretion and progression of type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app