EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation.

BACKGROUND: Asthma is a chronic inflammatory disease that is characterized clinically by airway hyperresponsiveness (AHR) to bronchoconstricting agents. The physiological response of the asthmatic lung to inhaled allergen is often characterized by two distinct phases: an early-phase response (EPR) within the first hour following exposure that subsides and a late-phase response (LPR) that is more prolonged and may occur several hours later. Mouse models of asthma have become increasingly popular and should be designed to exhibit an EPR, LPR and AHR.

OBJECTIVE: To determine whether a common model of asthma is capable of demonstrating an EPR, LPR and AHR.

METHODS: BALB/c mice were sensitized to ovalbumin (OVA) and challenged with one or three OVA aerosols. Changes in lung mechanics in response to allergen inhalation were assessed using a modification of the low-frequency forced oscillation technique (LFOT). In order to assess AHR, changes in lung mechanics in response to aerosolized methacholine were assessed using LFOT. Inflammatory cell infiltration into the lung was measured via bronchoalveolar lavage (BAL). ELISAs were used to measure inflammatory cytokines in the BAL and levels of IgE in the serum.

RESULTS: An EPR was only detectable after three OVA aerosols in approximately half of the mice studied. There was no evidence of an LPR despite a clear increase in cellular infiltration 6 h post-allergen challenge. AHR was present after a single OVA aerosol but not after three OVA aerosols.

CONCLUSIONS: The lack of an LPR, limited EPR and the absence of a link between the LPR and AHR highlight the limitations of this mouse model as a complete model of the lung dysfunction associated with asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app