JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Two critical residues in p-loop regions of puffer fish Na+ channels on TTX sensitivity.

We previously showed that Asn-383 and Thr-1569 residues of p-loop regions in domains I and IV, respectively, of the puffer fish, Fugu pardialis, skeletal muscle Na(v) (fNa(v)1.4a), are anomalous to those of other species of TTX-sensitive Na(+) channels, where the aromatic residues of Phe or Tyr, and Gly are the counterparts [Yotsu-Yamashita, M., Nishimori, K., Nitanai, Y., Isemura, M., Sugimoto, A., Yasumoto, T., 2000. Binding properties of (3)H-PbTx-3 and (3)H-saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish Fugu pardalis and the primary structure of a voltage-gated Na(+) channel alpha-subunit (fMNa1) from skeletal muscle of F. pardalis. Biochem. Biophys. Res. Commun. 267, 403-412]. The former was suggested to confer TTX resistance by using Y401N mutant of rNa(v)1.4 [Venkatesh, V., Lu, S.Q., Dandona, N., See, S.L., Benner, S., Soong, T.W., 2005. Genetic basis of tetrodotoxin resistance in pufferfishes. Curr. Biol. 15, 2069-2072]. The latter function remained to be elucidated. Thus, we further explored the function of these two residues, electrophysiologically, by evaluating the K(d) (dissociation constants) values of TTX for F385N, F385A, F385Q, G1718T, and F385N/G1718T mutants of rNa(v)1.2a, transiently expressed in HEK-293 cells. F385N caused 3000-fold increase of the K(d), while G1718T and F385N/G1718T caused 2- and 3-fold increases compared with those of WT and F385N, respectively, suggesting that G1718T further enhanced TTX resistivity caused by F385N. The K(d) for F385A and F385Q were 2- and 11-fold larger than that of F385N, respectively, suggesting that the longer side chain in the non-aromatic amino acid residue causes the larger decrease of TTX sensitivity. Despite drastic changes in the K(d), the mutations at F385 caused only small changes in the k(off) from that of WT, suggesting that the K(d) for TTX receptors are mainly determined by the k(on).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app