Add like
Add dislike
Add to saved papers

Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity.

MR elastography (MRE) enables the noninvasive determination of the viscoelastic behavior of human internal organs based on their response to oscillatory shear stress. An experiment was developed that combines multifrequency shear wave actuation with broad-band motion sensitization to extend the dynamic range of a single MRE examination. With this strategy, multiple wave images corresponding to different driving frequencies are simultaneously received and can be analyzed by evaluating the dispersion of the complex modulus over frequency. The technique was applied on the brain and liver of five healthy volunteers. Its repeatability was tested by four follow-up studies in each volunteer. Five standard rheological models (Maxwell, Voigt, Zener, Jeffreys and fractional Zener model) were assessed for their ability to reproduce the observed dispersion curves. The three-parameter Zener model was found to yield the most consistent results with two shear moduli mu(1) = 0.84 +/- 0.22 (1.36 +/- 0.31) kPa, mu(2) = 2.03 +/- 0.19 (1.86 +/- 0.34) kPa and one shear viscosity of eta = 6.7 +/- 1.3 (5.5 +/- 1.6) Pa s (interindividual mean +/- SD) in brain (liver) experiments. Significant differences between the rheological parameters of brain and liver were found for mu(1) and eta (P < 0.05), indicating that human brain is softer and possesses a higher viscosity than liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app