Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Mechanisms of oxidant production in esophageal squamous cell and Barrett's cell lines.

We hypothesized that differences among individuals in reflux-induced oxidant production by esophageal squamous epithelial cells might contribute to the development of Barrett's esophagus. We studied the effects of acid and bile acids on the production of reactive oxygen species (ROS) in esophageal squamous cell lines derived from gastroesophageal reflux disease patients with (NES-B3T) and without (NES-G2T) Barrett's esophagus and in a Barrett's epithelial cell line (BAR-T). Cells were incubated with an ROS-sensitive probe and exposed to acidic medium, neutral bile acid medium, or acidic bile acid medium. ROS were quantified in the presence and absence of diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor), N(G)-monomethyl-l-arginine (l-NMMA, a nitric oxide synthase inhibitor), and rotenone (a mitochondrial electron transport chain inhibitor). Acidic bile acid medium induced ROS production in both squamous cell lines; however, only DPI blocked ROS production by NES-B3T cells, whereas both DPI and l-NMMA blocked ROS production by NES-G2T cells. In BAR-T cells, acidic medium and acidic bile acid medium induced the production of ROS; l-NMMA prevented ROS production after exposure to acidic medium, whereas ROS production induced by acidic bile acid medium was blocked by DPI. These studies demonstrate that there are differences between esophageal squamous cells and Barrett's epithelial cells and between esophageal squamous cells from gastroesophageal reflux disease patients with and without Barrett's esophagus in the mechanisms of oxidant production induced by exposure to acid and bile acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app